DM74LS395

4-Bit Shift Register with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The LS395 is a 4-bit shift register with TRI-STATE outputs and can operate in either a synchronous parallel load or a serial shift-right mode, as determined by the Select input. An asynchronous active LOW Master Reset (MR) input overrides the synchronous operations and clears the register. An active LOW Output Enable ($\overline{\mathrm{OE}}$) input controls the TRISTATE output buffers, but does not interfere with the other operations. The fourth stage also has a conventional output for linking purposes in multi-stage serial operations.

Features

- Shift right or parallel 4-bit register
- TRI-STATE outputs
- Input clamp diodes limit high speed termination effects
- Fully CMOS and TTL compatible

Logic Symbol

TL/F/9833-2
$V_{C C}=\operatorname{Pin} 16$
$\mathrm{GND}=\operatorname{Pin} 8$

Order Number DM74LS395WM or DM74LS395N
See NS Package Number M16B or N16E

Mode Select Table									
Operating Mode	Inputs @ $\mathbf{t}_{\mathbf{n}}$					Outputs @ $\mathbf{t}_{\mathbf{n}+1}$			
	$\overline{\text { MR }}$	$\overline{C P}$	S	D_{S}	P_{n}	00	01	02	03
Asynchronous Reset Shift, SET First Stage	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\underbrace{x}	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	X	L	OO_{n}	$\mathrm{O1}_{\mathrm{n}}$	L 02 n
Shift, RESET First Stage Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\imath	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	X Pn	$\begin{gathered} \mathrm{L} \\ \mathrm{PO} \end{gathered}$	$\begin{gathered} \mathrm{OO}_{\mathrm{n}} \\ \mathrm{P} 1 \end{gathered}$	$\begin{aligned} & \mathrm{O} 1_{\mathrm{n}} \\ & \mathrm{P} 2 \end{aligned}$	$\begin{gathered} 02_{n} \\ \text { P3 } \end{gathered}$

$t_{n}, \mathrm{t}_{\mathrm{n}+1}=$ Time before and after CP HIGH-to-LOW transition
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X $=$ Immaterial

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
$V_{C C}$	Supply Voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4	mA
IOL	Low Level Output Current			8	mA
T_{A}	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & t_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\mathrm{S}, \mathrm{D}_{\mathrm{S}}$ or P_{n} to CP	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW S, D_{S} or P_{n} to $\overline{C P}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\overline{C P}}$ Pulse Width LOW	18			ns
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ Pulse Width LOW	20			ns

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.7			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-20		-100	mA
$I_{\text {cc }}$	Supply Current with Outputs OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{OE}}, \mathrm{D}_{\mathrm{S}}, \mathrm{~S}=4.5 \mathrm{~V} \\ & \overline{\mathrm{CP}}=乙, \mathrm{P}_{\mathrm{n}}=\mathrm{GND} \end{aligned}$			29	mA
	Supply Current with Outputs ON	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{D}_{\mathrm{S}}, \mathrm{~S}=4.5 \mathrm{~V} \\ & \overline{\mathrm{OE}}, \overline{\mathrm{CP}}, \mathrm{P}_{\mathrm{n}}=\mathrm{GND} \end{aligned}$			25	mA
IOZH	TRI-STATE Output Off Current HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCH}} \\ & \mathrm{~V}_{\mathrm{OZH}}=2.7 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{A}$
IOZL	TRI-STATE Output Off Current LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCH}} \\ & \mathrm{~V}_{\mathrm{OZL}}=0.4 \mathrm{~V} \end{aligned}$			-20	$\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	30		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{CP}} \text { to } \mathrm{O}_{\mathrm{n}}$		$\begin{aligned} & 35 \\ & 25 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}} \text { to } \mathrm{O}_{\mathrm{n}}$		35	ns
$\begin{aligned} & \text { tPZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 17 \\ & 23 \end{aligned}$	ns

Functional Description

The 'LS395 contains four D-type edge-triggered flip-flops and auxiliary gating to select a D input either from a Parallel $\left(P_{n}\right)$ input or from the preceding stage. When the Select input is HIGH, the P_{n} inputs are enabled. A LOW signal in the S input enables the serial inputs for shift-right operations, as indicated in the Truth Table.
State changes are initiated by HIGH-to-LOW transitions on the Clock Pulse ($\overline{\mathrm{CP}}$) input. Signals on the $\mathrm{P}_{\mathrm{n}}, \mathrm{D}_{\mathrm{S}}$ and S inputs can change when the Clock is in either state, provided that the recommended setup and hold times are ob-
served. When the S input is LOW, a $\overline{C P}$ HIGH-LOW transition transfers data in O 0 to $\mathrm{O} 1, \mathrm{O} 1$ to O 2 , and O 2 to O 3 . A left-shift is accomplished by connecting the outputs back to the P_{n} inputs, but offset one place to the left, i.e., O 3 to P 2 , O 2 to P1, and O1 to P0, with P3 acting as the linking input from another package.
When the $\overline{\mathrm{OE}}$ input is HIGH, the output buffers are disabled and the $\mathrm{O} 0-\mathrm{O} 3$ outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

Logic Diagram

TL/F/9833-3

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

