

54F/74F10 Triple 3-Input NAND Gate

General Description

This device contains three independent gates, each of which performs the logic NAND function.

Commercial	Military	Package Number	Package Description
74F10PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line
	54F10DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line
74F10SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F10SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F10FM (Note 2)	W14B	14-Lead Cerpack
	54F10LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol

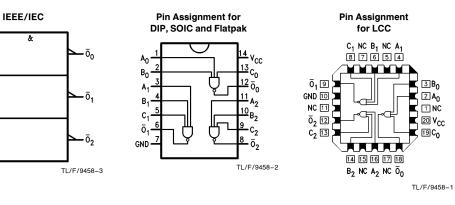
A₀

B₀.

C0-

A₁

B₁.


C1.

A2-

В2-

C2

Connection Diagrams

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
A _n , B _n , C _n o n	Inputs Outputs	1.0/1.0 50/33.3	20 µA/−0.6 mA −1 mA/20 mA		

FAST® and TRI-STATE® are registered trademarks of National Semiconductor Corporation.

©1995 National Semiconductor Corporation TL/F/9458

RRD-B30M75/Printed in U. S. A.

December 1994

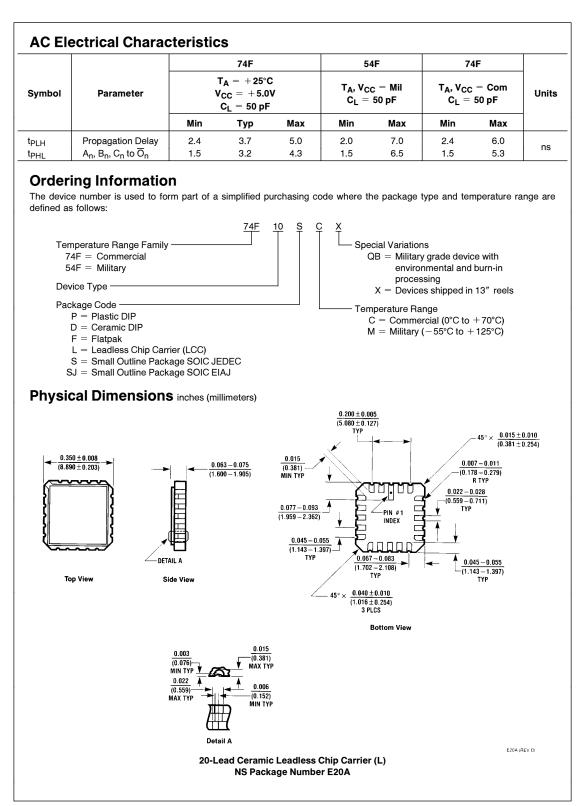
Absolute Maximum Ratings (Note 1)

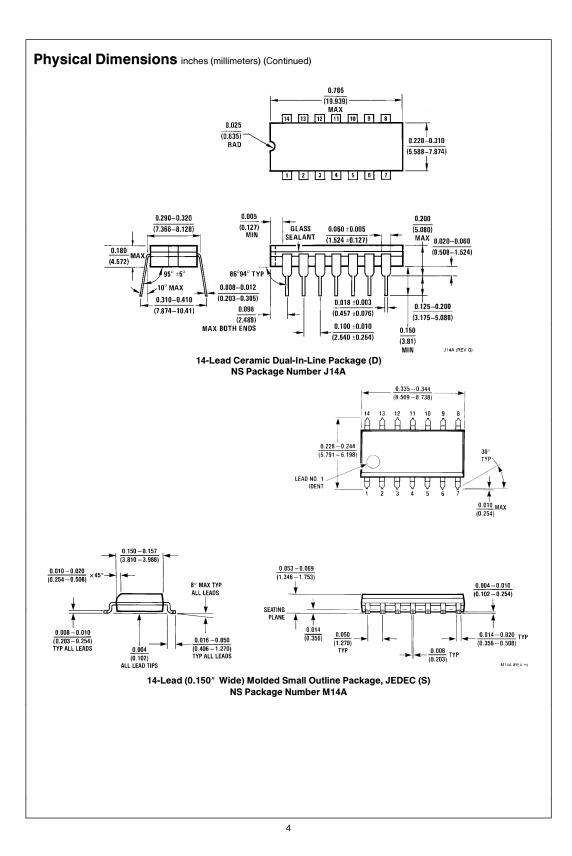
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

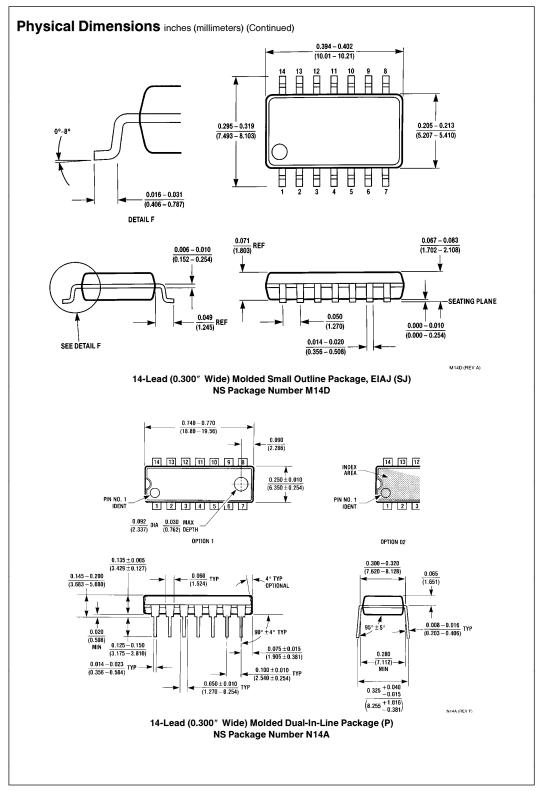
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to $+7.0V$
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE® Output	-0.5V to +5.5V
Current Applied to Output	
in LOW/ State (Max)	twice the rated $loc(mA)$

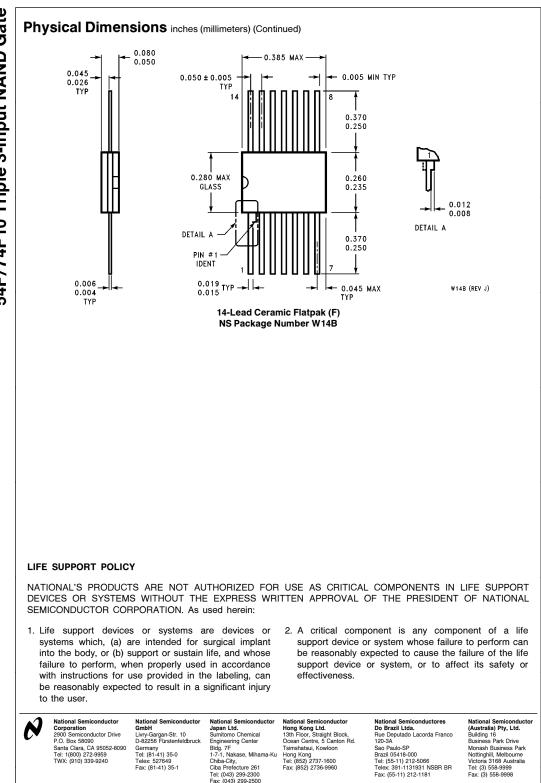
Recommended Operating Conditions

Free Air Ambient Temperature


-55°C to +125°C
0°C to +70°C
+4.5V to +5.5V
+4.5V to +5.5V


in LOW State (Max) twice the rated I_{OL} (mA) Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
Symbol			Min	Тур	Max	Units	vcc	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Sign	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signa
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \mu A$ All other pins grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All other pins grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
l _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CCH}	Power Supply Current			1.4	2.1	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			5.1	7.7	mA	Max	$V_{O} = LOW$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

54F/74F10 Triple 3-Input NAND Gate