INTEGRATED CIRCUITS ## DATA SHEET ### **TEA1110A** Low voltage versatile telephone transmission circuit with dialler interface Product specification Supersedes data of 1996 Nov 26 File under Integrated Circuits, IC03 1997 Apr 22 ### **TEA1110A** #### **FEATURES** - Low DC line voltage; operates down to 1.6 V (excluding voltage drop over external polarity guard) - Voltage regulator with adjustable DC voltage - · Provides a supply for external circuits - Symmetrical high impedance inputs (64 kΩ) for dynamic, magnetic or piezo-electric microphones - Asymmetrical high impedance input (32 kΩ) for electret microphones - DTMF input with confidence tone - MUTE input for pulse or DTMF dialling - Receiving amplifier for dynamic, magnetic or piezo-electric earpieces - AGC line loss compensation for microphone and earpiece amplifiers. #### **APPLICATION** • Line powered telephone sets, cordless telephones, fax machines, answering machines. #### **GENERAL DESCRIPTION** The TEA1110A is a bipolar integrated circuit that performs all speech and line interface functions required in fully electronic telephone sets. It performs electronic switching between speech and dialling. The IC operates at a line voltage down to 1.6 V DC (with reduced performance) to facilitate the use of telephone sets connected in parallel. All statements and values refer to all versions unless otherwise specified. #### QUICK REFERENCE DATA I_{line} = 15 mA; V_{EE} = 0 V; R_{SLPE} = 20 Ω ; AGC pin connected to V_{EE} ; Z_{line} = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |--------------------|---|-------------------------------|------|------|------|------| | I _{line} | line current operating range | normal operation | 11 | _ | 140 | mA | | | | with reduced performance | 1 | _ | 11 | mA | | V _{LN} | DC line voltage | | 3.35 | 3.65 | 3.95 | V | | I _{CC} | internal current consumption | V _{CC} = 2.9 V | _ | 1.1 | 1.4 | mA | | V _{CC} | supply voltage for peripherals | $I_P = 0 \text{ mA}$ | _ | 2.9 | _ | V | | G _{vtrx} | typical voltage gain | | | | | | | | microphone amplifier (not adjustable) | V _{MIC} = 4 mV (RMS) | _ | 43.7 | _ | dB | | | receiving amplifier range | V _{IR} = 4 mV (RMS) | 19 | _ | 33 | dB | | ΔG_{vtrx} | gain control range for microphone and receiving amplifiers with respect to $I_{line} = 15 \text{ mA}$ | I _{line} = 85 mA | _ | 5.9 | _ | dB | | ΔG_{vtrxm} | gain reduction for microphone and receiving amplifiers | MUTE = LOW | _ | 80 | _ | dB | #### **ORDERING INFORMATION** | TYPE | | PACKAGE | | | | | |-----------|--------------------------|--|----------|--|--|--| | NUMBER | IBER NAME DESCRIPTION VE | | | | | | | TEA1110A | DIP14 | plastic dual in-line package; 14 leads (300 mil) | SOT27-1 | | | | | TEA1110AT | SO14 | plastic small outline package; 14 leads; body width 3.9 mm | SOT108-1 | | | | **TEA1110A** #### **BLOCK DIAGRAM** ### Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### **PINNING** | SYMBOL | PIN | DESCRIPTION | |-----------------|-----|---| | LN | 1 | positive line terminal | | SLPE | 2 | slope (DC resistance) adjustment | | REG | 3 | line voltage regulator decoupling | | n.c. | 4 | not connected | | DTMF | 5 | dual-tone multi-frequency input | | MUTE | 6 | mute input to select speech or dialling mode (active LOW) | | IR | 7 | receiving amplifier input | | AGC | 8 | automatic gain control/
line loss compensation | | MIC- | 9 | inverting microphone amplifier input | | MIC+ | 10 | non-inverting microphone amplifier input | | V _{EE} | 11 | negative line terminal | | QR | 12 | receiving amplifier output | | GAR | 13 | receive gain adjustment | | V _{CC} | 14 | supply voltage for speech circuit and peripherals | #### **FUNCTIONAL DESCRIPTION** All data given in this chapter are typical values, except when otherwise specified. #### Supply (pins LN, SLPE, V_{CC} and REG) The supply for the TEA1110A and its peripherals is obtained from the telephone line. See Fig.3. The IC generates a stabilized reference voltage (V_{ref}) between pins LN and SLPE. V_{ref} is temperature compensated and can be adjusted by means of an external resistor (R_{VA}). V_{ref} equals 3.35 V and can be increased by connecting R_{VA} between pins REG and SLPE (see Fig.4), or decreased by connecting R_{VA} between pins REG and LN. The voltage at pin REG is used by the internal regulator to generate V_{ref} and is decoupled by C_{REG} , which is connected to V_{EE} . This capacitor, converted into an equivalent inductance (see Section "Set impedance"), realizes the set impedance conversion from its DC value (R_{SLPE}) to its AC value (R_{CC} in the audio-frequency range). The voltage at pin SLPE is proportional to the line current. The voltage at pin LN is: $$V_{LN} = V_{ref} + R_{SLPE} \times I_{SLPE}$$ $$I_{SLPE} = I_{line} - I_{CC} - I_{P} - I^*$$ Where: I_{line} = line current I_{CC} = current consumption of the IC I_P = supply current for peripheral circuits I^* = current consumed between LN and V_{FF} . The preferred value for R_{SLPE} is $20~\Omega$. Changing R_{SLPE} will affect more than the DC characteristics; it also influences the microphone and DTMF gains, the gain control characteristics, the sidetone level and the maximum output swing on the line. ### Low voltage versatile telephone transmission circuit with dialler interface ### **TEA1110A** The internal circuitry of the TEA1110A is supplied from pin V_{CC} . This voltage supply is derived from the line voltage by means of a resistor (R_{CC}) and must be decoupled by a capacitor C_{VCC} . It may also be used to supply peripheral circuits such as dialling or control circuits. The V_{CC} voltage depends on the current consumed by the IC and the peripheral circuits as shown by the formula: $$V_{CC} = V_{CC0} - R_{CCint} \times (I_P - I_{rec})$$ $$V_{CC0} = V_{LN} - R_{CC} \times I_{CC}$$ (see also Figs 5 and 6). R_{CCint} is the internal equivalent resistance of the voltage supply, and I_{rec} is the current consumed by the output stage of the earpiece amplifier. The DC line current flowing into the set is determined by the exchange supply voltage (V_{exch}), the feeding bridge resistance (R_{exch}), the DC resistance of the telephone line (R_{line}) and the reference voltage (V_{ref}). With line currents below 7.5 mA, the internal reference voltage (generating V_{ref}) is automatically adjusted to a lower value. This means that more sets can operate in parallel with DC line voltages (excluding the polarity guard) down to an absolute minimum voltage of 1.6 V. At currents below 7.5 mA, the circuit has limited sending and receiving levels. This is called the low voltage area. 1997 Apr 22 ### Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### Set impedance In the audio frequency range, the dynamic impedance is mainly determined by the R_{CC} resistor. The equivalent impedance of the circuit is illustrated in Fig.7. #### Microphone amplifier (pins MIC+ and MIC-) The TEA1110A has symmetrical microphone inputs. The input impedance between pins MIC+ and MIC- is $64 \text{ k}\Omega \text{ } (2 \times 32 \text{ k}\Omega)$. The voltage gain from pins MIC+/MIC- to pin LN is set at 43.7 dB (typ). Automatic gain control is provided on this amplifier for line loss compensation. #### Receiving amplifier (pins IR, GAR and QR) The receiving amplifier has one input (IR) and one output (QR). The input impedance between pin IR and pin V_{EE} is 20 k Ω . The voltage gain from pin IR to pin QR is set at 33 dB (typ). The gain can be decreased by connecting an external resistor R_{GAR} between pins GAR and QR; the adjustment range is 14 dB. Two external capacitors C_{GAR} (connected between GAR and QR) and C_{GARS} (connected between GAR and V_{EE}) ensure stability. The C_{GAR} capacitor provides a first-order low-pass filter. The cut-off frequency corresponds to the time constant $C_{GAR} \times (R_{GARint} \slashed{/}\slashed{/$ The output voltage of the receiving amplifier is specified for continuous wave drive. The maximum output swing depends on the DC line voltage, the R_{CC} resistor, the I_{CC} current consumption of the circuit, the I_{P} current consumption of the peripheral circuits and the load impedance. Automatic gain control is provided on this amplifier for line loss compensation. #### Automatic gain control (pin AGC) The TEA1110A performs automatic line loss compensation. The automatic gain control varies the gain of the microphone amplifier and the gain of the receiving amplifier in accordance with the DC line current. The control range is 5.9 dB (which corresponds approximately to a line length of 5 km for a 0.5 mm diameter twisted-pair copper cable with a DC resistance of 176 Ω /km and an average attenuation of 1.2 dB/km). The IC can be used with different configurations of feeding bridge (supply voltage and bridge resistance) by connecting an external resistor R_{AGC} between pins AGC and V_{EE} . This resistor enables the I_{start} and I_{stop} line currents to be increased (the ratio between I_{start} and I_{stop} is not affected by the resistor). The AGC function is disabled when pin AGC is left open-circuit. #### Mute function (pin MUTE) The mute function performs the switching between the speech mode and the dialling mode. When MUTE is LOW, the DTMF input is enabled and the microphone and receiving amplifiers inputs are disabled. When MUTE is HIGH, the microphone and receiving amplifiers inputs are enabled while the DTMF input is disabled. A pull-up resistor is included at the input. #### **DTMF** amplifier (pin DTMF) When the DTMF amplifier is enabled, dialling tones may be sent on line. These tones can be heard in the earpiece at a low level (confidence tone). The TEA1110A has an asymmetrical DTMF input. The input impedance between DTMF and V_{EE} is 20 k Ω . The voltage gain from pin DTMF to pin LN is 25.3 dB. The automatic gain control has no effect on the DTMF amplifier. peripheral circuits at I_{line} = 15 mA. 6 ### Low voltage versatile telephone transmission circuit with dialler interface ### **TEA1110A** #### SIDETONE SUPPRESSION The TEA1110A anti-sidetone network comprising $R_{CC}//Z_{line}$, R_{ast1} , R_{ast2} , R_{ast3} , R_{SLPE} and Z_{bal} (see Fig.8) suppresses the transmitted signal in the earpiece. Maximum compensation is obtained when the following conditions are fulfilled: $$R_{SLPE} \times R_{ast1} = R_{CC} \times (R_{ast2} + R_{ast3})$$ $$k = \frac{(R_{ast2} \times (R_{ast3} + R_{SLPE}))}{(R_{ast1} \times R_{SLPE})}$$ $$Z_{bal} = k \times Z_{line}$$ The scale factor k is chosen to meet the compatibility with a standard capacitor from the E6 or E12 range for Z_{bal} . In practice, Z_{line} varies considerably with the line type and the line length. Therefore, the value of Z_{bal} should be for an average line length which gives satisfactory sidetone suppression with short and long lines. The suppression also depends on the accuracy of the match between Z_{bal} and the impedance of the average line. The anti-sidetone network for the TEA1110A (as shown in Fig.12) attenuates the receiving signal from the line by 32 dB before it enters the receiving amplifier. The attenuation is almost constant over the whole audio frequency range. A Wheatstone bridge configuration (see Fig.9) may also be used. More information on the balancing of an anti-sidetone bridge can be obtained in our publication "Applications Handbook for Wired Telecom Systems, ICO3b", order number 9397 750 00811. ## Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** ## Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 134). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |---------------------|---|--|-----------------------|-----------------------|------| | V _{LN} | positive continuous line voltage | | V _{EE} - 0.4 | 12 | V | | | repetitive line voltage during switch-on or line interruption | | V _{EE} – 0.4 | 13.2 | V | | V _{n(max)} | maximum voltage on all pins | | V _{EE} – 0.4 | V _{CC} + 0.4 | V | | I _{line} | line current | $R_{SLPE} = 20 \Omega;$ see Figs 10 and 11 | _ | 140 | mA | | P _{tot} | total power dissipation | T _{amb} = 75 °C; | | | | | | TEA1110A | see Figs 10 and 11 | _ | 588 | mW | | | TEA1110AT | | _ | 384 | mW | | T _{stg} | storage temperature | | -40 | +125 | °C | | T _{amb} | operating ambient temperature | | -25 | +75 | °C | #### **HANDLING** This device meets class 2 ESD test requirements [Human Body Model (HBM)], in accordance with "MIL STD 883C - method 3015". #### THERMAL CHARACTERISTICS | SYMBOL | PARAMETER | VALUE | UNIT | |---------------------|--|-------|------| | R _{th j-a} | thermal resistance from junction to ambient in free air; mounted on epoxy board 40.1 × 19.1 × 1.5 mm (TEA1110A) | 85 | K/W | | | thermal resistance from junction to ambient in free air; mounted on epoxy board $40.1 \times 19.1 \times 1.5$ mm (TEA1110AT) | 130 | K/W | 150 l_{line} ### Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** Fig.10 SO14 Safe operating area (TEA1110AT). 1997 Apr 22 10 ## Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### **CHARACTERISTICS** I_{line} = 15 mA; V_{EE} = 0 V; R_{SLPE} = 20 Ω ; AGC pin connected to V_{EE} ; Z_{line} = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |----------------------------|---|--|------|-------|------|------| | Supplies (pi | ins V _{LN} , V _{CC} , SLPE and REG) | | 1 | | | | | V _{ref} | stabilized voltage between LN and SLPE | | 3.1 | 3.35 | 3.6 | V | | V _{LN} | DC line voltage | I _{line} = 1 mA | _ | 1.6 | _ | V | | | | I _{line} = 4 mA | _ | 2.3 | _ | V | | | | I _{line} = 15 mA | 3.35 | 3.65 | 3.95 | V | | | | I _{line} = 140 mA | _ | _ | 6.9 | V | | $V_{LN(exR)}$ | DC line voltage with an external resistor R _{VA} | $R_{VA(SLPE-REG)} = 27 \text{ k}\Omega$ | _ | 4.4 | _ | V | | $\Delta V_{LN(T)}$ | DC line voltage variation with temperature referred to 25 °C | $T_{amb} = -25 \text{ to } +75 ^{\circ}\text{C}$ | _ | ±30 | _ | mV | | I _{CC} | internal current consumption | V _{CC} = 2.9 V | _ | 1.1 | 1.4 | mA | | V _{CC} | supply voltage for peripherals | $I_P = 0 \text{ mA}$ | _ | 2.9 | _ | V | | R _{CCint} | equivalent supply voltage resistance | I _P = 0.5 mA | _ | 550 | 620 | Ω | | Microphone | amplifier (pins MIC+ and MIC–) | | | | | | | Z _i | input impedance | | | | | | | | differential between pins MIC+ and MIC- | | _ | 64 | _ | kΩ | | | single-ended between pins
MIC+/MIC- and V _{EE} | | _ | 32 | _ | kΩ | | G _{vtx} | voltage gain from MIC+/MIC- to LN | V _{MIC} = 4 mV (RMS) | 42.7 | 43.7 | 44.7 | dB | | $\Delta G_{\text{vtx(f)}}$ | gain variation with frequency referred to 1 kHz | f = 300 to 3400 Hz | _ | ±0.2 | _ | dB | | $\Delta G_{\text{vtx}(T)}$ | gain variation with temperature referred to 25 °C | $T_{amb} = -25 \text{ to } +75 ^{\circ}\text{C}$ | _ | ±0.3 | _ | dB | | CMRR | common mode rejection ratio | | _ | 80 | _ | dB | | V _{LN(max)(rms)} | maximum sending signal | I _{line} = 15 mA; THD = 2% | 1.4 | 1.7 | _ | V | | | (RMS value) | I _{line} = 4 mA, THD = 10% | _ | 0.8 | _ | V | | V _{notx} | noise output voltage at pin LN; pins MIC+/MIC- shorted through 200 Ω | psophometrically weighted (P53 curve) | _ | -78.5 | _ | dBmp | | Receiving a | mplifier (pins IR, QR and GAR) | | | | | ' | | Z _i | input impedance | | _ | 20 | _ | kΩ | | G _{vrx} | voltage gain from IR to QR | V _{IR} = 4 mV (RMS) | 32 | 33 | 34 | dB | | $\Delta G_{Vrx(f)}$ | gain variation with frequency referred to 1 kHz | f = 300 to 3400 Hz | _ | ±0.2 | _ | dB | | $\Delta G_{\text{Vrx}(T)}$ | gain variation with temperature referred to 25 °C | $T_{amb} = -25 \text{ to } +75 ^{\circ}\text{C}$ | - | ±0.3 | _ | dB | # Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |------------------------|--|--|-----------------------|------|-----------------------|------| | ΔG_{Vrxr} | gain voltage reduction range | external resistor
connected between
GAR and QR | _ | _ | 14 | dB | | V _{o(rms)} | maximum receiving signal (RMS value) | I_P = 0 mA sine wave drive; R_L = 150 Ω ; THD = 2% | _ | 0.25 | _ | V | | | | I_P = 0 mA sine wave drive; R_L = 450 Ω ; THD = 2% | _ | 0.35 | _ | V | | V _{norx(rms)} | noise output voltage at pin QR (RMS value) | G_{vrx} = 33 dB;
IR open-circuit;
R_L = 150 Ω ;
psophometrically
weighted (P53 curve) | - | -87 | _ | dBVp | | Automatic | gain control (pin AGC) | | | | | | | ΔG_{vtrx} | gain control range for microphone
and receiving amplifiers with respect
to I _{line} = 15 mA | I _{line} = 85 mA | _ | 5.9 | _ | dB | | I _{start} | highest line current for maximum gain | - | | 23 | _ | mA | | I _{stop} | lowest line current for minimum gain | | _ | 56 | _ | mA | | DTMF amp | lifier (pin DTMF) | | | | | | | Z _i | input impedance | | _ | 20 | _ | kΩ | | G _{vdtmf} | voltage gain from DTMF to LN | $\frac{V_{DTMF}}{MUTE} = 20 \text{ mV (RMS)};$ | 24.1 | 25.3 | 26.5 | dB | | $\Delta G_{vdtmf(f)}$ | gain variation with frequency referred to 1 kHz | f = 300 to 3400 Hz | _ | ±0.2 | _ | dB | | $\Delta G_{vdtmf(T)}$ | gain variation with temperature referred to 25 °C | $T_{amb} = -25 \text{ to } +75 ^{\circ}\text{C}$ | _ | ±0.4 | _ | dB | | G _{vct} | voltage gain from DTMF to QR (confidence tone) | V_{DTMF} = 20 mV (RMS);
R _L = 150 Ω | _ | -15 | _ | dB | | Mute funct | ion (pin MUTE) | | • | • | | • | | V _{IL} | LOW level input voltage | | V _{EE} - 0.4 | _ | V _{EE} + 0.3 | V | | V _{IH} | HIGH level input voltage | | V _{EE} + 1.5 | _ | V _{CC} + 0.4 | V | | I _{MUTE} | input current | | | 1.5 | | μΑ | | ΔG_{vtrxm} | gain reduction for microphone and receiving amplifiers | MUTE = LOW | | 80 | | dB | **TEA1110A** #### **APPLICATION INFORMATION** ### Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### **PACKAGE OUTLINES** SO14: plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |--------|-----------|------------------|----------------|-----------------------|--------------|------------------|------------------|------------------|-------|--------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 8.75
8.55 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.0098
0.0039 | 0.057
0.049 | 0.01 | | 0.0098
0.0075 | 0.35
0.34 | 0.16
0.15 | 0.050 | 0.24
0.23 | 0.041 | 0.039
0.016 | 0.028
0.024 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | #### Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | | EUROPEAN | ISSUE DATE | | |----------|---------|----------|-------|--|------------|---------------------------------|--| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | | SOT108-1 | 076E06S | MS-012AB | | | | 91-08-13
95-01-23 | | **TEA1110A** DIP14: plastic dual in-line package; 14 leads (300 mil) SOT27-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁
min. | A ₂
max. | b | b ₁ | С | D ⁽¹⁾ | E ⁽¹⁾ | е | e ₁ | L | ME | M _H | w | Z ⁽¹⁾
max. | |--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|----------------|-------|--------------------------| | mm | 4.2 | 0.51 | 3.2 | 1.73
1.13 | 0.53
0.38 | 0.36
0.23 | 19.50
18.55 | 6.48
6.20 | 2.54 | 7.62 | 3.60
3.05 | 8.25
7.80 | 10.0
8.3 | 0.254 | 2.2 | | inches | 0.17 | 0.020 | 0.13 | 0.068
0.044 | 0.021
0.015 | 0.014
0.009 | 0.77
0.73 | 0.26
0.24 | 0.10 | 0.30 | 0.14
0.12 | 0.32
0.31 | 0.39
0.33 | 0.01 | 0.087 | #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | |---------|--------|----------|-------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | ISSUE DATE | | SOT27-1 | 050G04 | MO-001AA | | | 92-11-17
95-03-11 | ### Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### **SOLDERING** #### Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011). #### DIP #### SOLDERING BY DIPPING OR BY WAVE The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. #### REPAIRING SOLDERED JOINTS Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds. #### SO #### REFLOW SOLDERING Reflow soldering techniques are suitable for all SO packages. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45\,^{\circ}\text{C}$. #### WAVE SOLDERING Wave soldering techniques can be used for all SO packages if the following conditions are observed: - A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. - The longitudinal axis of the package footprint must be parallel to the solder flow. - The package footprint must incorporate solder thieves at the downstream end. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. #### REPAIRING SOLDERED JOINTS Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. ### Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** #### **DEFINITIONS** | Data sheet status | | | | | | | | |---|--|--|--|--|--|--|--| | Objective specification | tive specification This data sheet contains target or goal specifications for product development. | | | | | | | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | | | | | | | Product specification | This data sheet contains final product specifications. | | | | | | | | Limiting values | | | | | | | | | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification | | | | | | | | Application information Where application information is given, it is advisory and does not form part of the specification. is not implied. Exposure to limiting values for extended periods may affect device reliability. #### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** **NOTES** Low voltage versatile telephone transmission circuit with dialler interface **TEA1110A** **NOTES** ### Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 **Belgium:** see The Netherlands **Brazil:** see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 **Japan:** Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130. Fay. +81 3 3740 5077 Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 **Korea:** Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 **Malaysia:** No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 **Norway:** Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 **Poland:** Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 **South America:** Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 **Spain:** Balmes 22, 08007 BARCEL ONA Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 **Switzerland:** Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1997 SCA54 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 417027/1200/02/pp20 Date of release: 1997 Apr 22 Document order number: 9397 750 02077 Let's make things better.