October 1987 Revised January 1999

MM74C00 • MM74C02 • MM74C04 Quad 2-Input NAND Gate • Quad 2-Input NOR Gate • Hex Inverter

General Description

FAIRCHILD

SEMICONDUCTOR

The MM74C00, MM74C02, and MM74C04 logic gates employ complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity and symmetric controlled rise and fall times. With features such as this the 74C logic family is close to ideal for use in digital systems. Function and pin out compatibility with series 74 devices minimizes design time for those designers already familiar with the standard 74 logic family. All inputs are protected from damage due to static discharge by diode clamps to $V_{\rm CC}$ and GND.

Features

- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power consumption: 10 nW/package (typ.)
- Low power: TTL compatibility:
- Fan out of 2 driving 74L

Ordering Code:

Order Number	Package Number	Package Description			
MM74C00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow			
MM74C00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
MM74C02N	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow			
MM74C04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow			
MM74C04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

© 1999 Fairchild Semiconductor Corporation DS005877.prf

MM74C00 • MM74C02 • MM74C04 Quad 2-Input NAND Gate • Quad 2-Input NOR Gate • Hex Inverter

Absolute Maximum Ratings(Note 1)

Voltage at Any Pi	n	–0.3V to V _{CC} + 0.3V
Operating Tempe	rature Range	-40°C to +85°C
Storage Tempera	ture Range	$-65^{\circ}C$ to $+150^{\circ}C$
Operating V _{CC} Ra	ange	3.0V to 15V
Maximum V _{CC} Vo	oltage	18V
Power Dissipation	n (P _D)	
Dual-In-Line		700 mW
Small Outline		500 mW

Lead Temperature

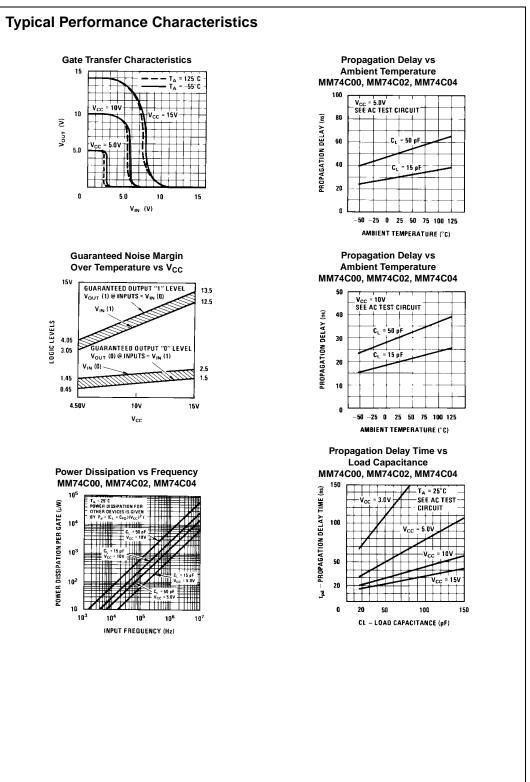
(Soldering, 10 seconds)

300°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

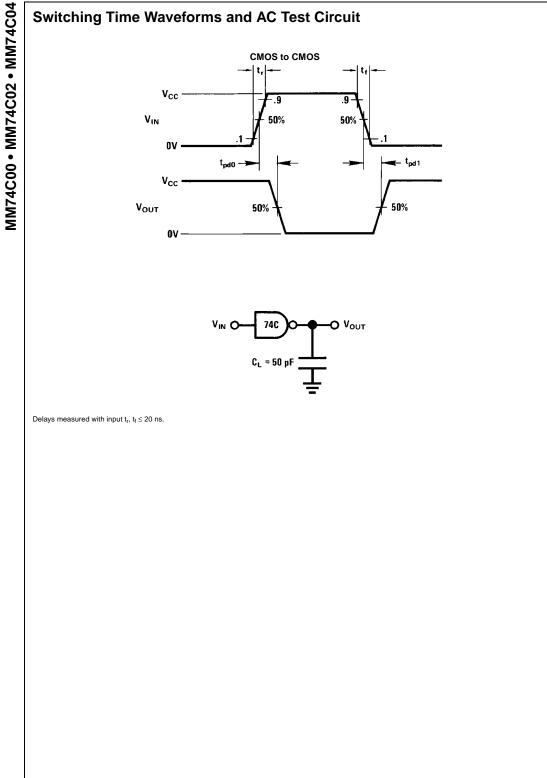
DC Electrical Characteristics

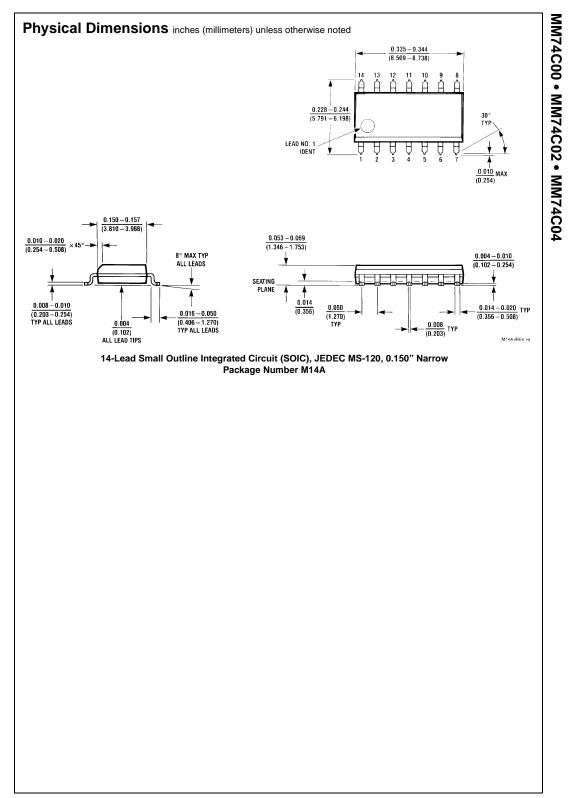
Min/Max limits apply across the guaranteed temperature range unless otherwise noted

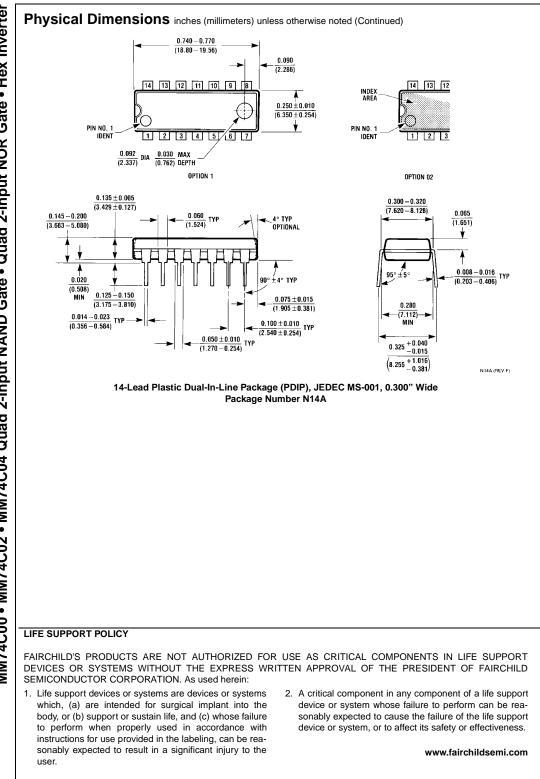

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
CMOS TO CMC	DS						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0 V$	3.5			V	
		$V_{CC} = 10V$	8.0			V	
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V	
		$V_{CC} = 10V$			2.0	V	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \ \mu A$	4.5			V	
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			V	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = 10 \ \mu A$			0.5	V	
		$V_{CC} = 10V, I_{O} = 10 \mu A$			1.0	V	
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ	
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ	
I _{CC}	Supply Current	$V_{CC} = 15V$		0.01	15	μA	
LOW POWER T	O CMOS						
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	V _{CC} - 1.5			V	
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			0.8	V	
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = -10 \ \mu A$	4.4			V	
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = 10 \ \mu A$			0.4	V	
CMOS TO LOW	POWER						
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	4.0			V	
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			1.0	V	
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = -360 \ \mu A$	2.4			V	
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = 360 \ \mu A$			0.4	V	
OUTPUT DRIVI	E (see Family Characteristics Data She	et) T _A = 25°C (short circuit current)					
ISOURCE	Output Source Current	$V_{CC} = 5.0V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-1.75			mA	
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-8.0			mA	
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V, V_{IN(1)} = 5.0V, V_{OUT} = V_{CC}$	1.75			mA	
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V, V_{OUT} = V_{CC}$	8.0			mA	
AC Electrical Characteristics (Note 2)							
$T_A = 25^\circ C, C_L$	= 50 pF, unless otherwise specified						
Symbol	Parameter	Conditions	Min	Тур	Max	Units	

MM74C00, MM74C02, MM74C04							
t _{pd0} , t _{pd1}	Propagation Delay Time to	$V_{CC} = 5.0V$		50	90	ns	
	Logical "1" or "0"	$V_{CC} = 10V$		30	60	ns	
CIN	Input Capacitance	(Note 3)		6.0		pF	
C _{PD}	Power Dissipation Capacitance	Per Gate or Inverter (Note 4)		12		pF	

Note 2: AC Parameters are guaranteed by DC correlated testing.


Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note— AN-90.



MM74C00 • MM74C02 • MM74C04

www.fairchildsemi.com

