DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4076B MSI
 Quadruple D-type register with 3-state outputs

File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4076B is a quadruple edge-triggered D-type flip-flop with four data inputs $\left(D_{0}\right.$ to $\left.D_{3}\right)$, two active LOW data enable inputs ($\overline{E D}_{0}$ and $\left.\overline{E D}_{1}\right)$, a common clock input (CP), four 3-state outputs (O_{0} to O_{3}), two active LOW output enable inputs ($\overline{\mathrm{EO}}_{0}$ and $\left.\overline{\mathrm{EO}}_{1}\right)$, and an overriding asynchronous master reset input (MR).

Fig. 1 Functional diagram.

PINNING

D_{0} to D_{3}
$\overline{\mathrm{ED}}_{0}, \overline{\mathrm{ED}}_{1}$
$\overline{\mathrm{EO}}_{0}, \overline{\mathrm{EO}}_{1}$
CP
MR
O_{0} to O_{3}
data inputs
data enable inputs (active LOW)
output enable inputs (active LOW)
clock input (LOW to HIGH, edge-triggered)
master reset input
data outputs

Information on D_{0} to D_{3} is stored in the four flip-flops on the LOW to HIGH transition of CP if both $\overline{E D}_{0}$ and $\overline{E D}_{1}$ are LOW. A HIGH on either $\overline{E D}_{0}$ or $\overline{E D}_{1}$ prevents the flip-flops from changing on the LOW to HIGH transition of CP, independent of the information on D_{0} to D_{3}. When both $\overline{\mathrm{EO}}_{0}$ and $\overline{\mathrm{EO}}_{1}$ are LOW, the contents of the four flip-flops are available at O_{0} to O_{3}. A HIGH on either $\overline{\mathrm{EO}}_{0}$ or $\overline{\mathrm{EO}}_{1}$ forces O_{0} to O_{3} into the high impedance OFF-state. A HIGH on MR resets all four flip-flops, independent of all other input conditions.

Fig. 2 Pinning diagram.

HEF4076BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4076BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4076BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Fig. 3 Logic diagram.

FUNCTION TABLE

					OUTPUTS
MR	CP	$\overline{\mathbf{E D}}_{\mathbf{0}}$	$\overline{\mathbf{E D}}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{o}_{\mathbf{n}}$
H	X	X	X	X	L
L	\nearrow	H	X	X	no change
L	\nearrow	X	H	X	no change
L	\nearrow	L	L	H	H
L	\nearrow	L	L	L	L
L	L	X	X	X	no change

Notes

1. $\overline{\mathrm{EO}}_{0}=\overline{\mathrm{EO}}_{1}=\mathrm{LOW}$

When either $\overline{\mathrm{EO}}_{0}$ or $\overline{\mathrm{EO}}_{1}$ is HIGH , the outputs are disabled (high impedance OFF-state).
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\Gamma=$ positive-going transition
L = negative-going transition

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$; see also waveforms Fig. 4

	V_{DD}	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH $\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 150 \\ 60 \\ 45 \end{array}$	$\begin{array}{r} 305 \\ 120 \\ 85 \end{array}$	ns ns ns	$\begin{aligned} 123 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 49 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 37 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PL }}$	$\begin{array}{r} \hline 160 \\ 65 \\ 45 \end{array}$	$\begin{array}{r} \hline 320 \\ 130 \\ 90 \end{array}$	ns ns ns	$\begin{aligned} \hline 133 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 54 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 37 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 95 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 190 \\ 85 \\ 65 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {H }}$ L	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {L }}$ LH	$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & \hline 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
3-state propagation times Output disable times $\overline{\mathrm{EO}}_{n} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PHZ }}$	$\begin{aligned} & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{array}{r} 105 \\ 70 \\ 65 \end{array}$	ns ns ns	
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpLZ	$\begin{aligned} & 45 \\ & 30 \\ & 30 \end{aligned}$	90 65 60	ns ns ns	

	V_{DD}	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output enable times $\overline{\mathrm{EO}}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH	5	$t_{\text {PzH }}$	65	130	ns	
	10		30	55	ns	
	15		20	40	ns	
	5		60	120	ns	
LOW	10	$\mathrm{t}_{\text {PZL }}$	25	50	ns	
	15		20	35	ns	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$
$\left.\begin{array}{|c|r|l|rrr|r|}\hline & \mathbf{V}_{\text {DD }} & \text { SYMBOL } & \text { MIN. } & \text { TYP. } & \text { MAX. } & \text { TYPICAL EXTRAPOLATION } \\ \text { FORMULA }\end{array}\right]$

	$V_{D D}$ \mathbf{V}	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$2200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$9300 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$24500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
		$\sum\left(\mathrm{f}_{0} C_{L}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 4 Waveforms showing propagation delays, output disable/enable times, minimum CP and MR pulse widths, set-up and hold times for D_{n} to $C P$ and $\overline{E D}_{n}$ to $C P$, and recovery time for MR. Set-up and hold times are shown as positive values but may be specified as negative values.

